
Git Cheat Sheet

Create

From existing repo

From existing data
cd ~/projects/myproject
git init
git add .

git clone ~/existing/repo ~/new/repo
git clone git://host.org/project.git
git clone ssh://you@host.org/proj.git

Remember: git command --help

Global Git configuration is stored in $HOME/.gitconfig (git config --help)

Files changed in working directory

Show

A specific file from a specific $ID

Changes to tracked files

git status

git diff

git show $id:$file

All local branches
git branch

History of changes
git log

Who changed what and when in a file
git blame $file

What changed between $ID1 and $ID2
git diff $id1 $id2

History of changes for file with diffs
git log -p $file $dir/ec/tory/

A commit identified by $ID
git show $id

Revert

Revert the last commit
git revert HEAD

Revert specific commit
git revert $id

Checkout the $id version of a file
git checkout $id $file

!! you cannot undo a hard reset

Return to the last committed state
git reset --hard

Fix the last commit
git commit -a --amend

(after editing the broken files)

Creates a new commit

Creates a new commit

Branch

Merge branch1 into branch2
git checkout $branch2
git merge branch1

Create branch named $branch based on
 the HEAD
git branch $branch

Switch to the $id branch
git checkout $id

Create branch $new_branch based on
branch $other and switch to it
git checkout -b $new_branch $other

Delete branch $branch
git branch -d $branch

Commit all your local changes

Publish

git commit -a

Prepare a patch for other developers
git format-patch origin

git push
Push changes to origin

Mark a version / milestone
git tag v1.0

(complete conflict diff)

(star '*' marks the current branch)

Pull latest changes from origin
git pull

(does a fetch followed by a merge)

Fetch latest changes from origin

Update

git fetch
(but this does not merge them).

(in case of a conflict, resolve and use
 git am --resolved)

Apply a patch that some sent you
git am -3 patch.mbox

Finding regressions
git bisect start
git bisect good $id
git bisect bad $id

git bisect bad/good
git bisect visualize
git bisect reset

Check for errors and cleanup repository
git fsck
git gc --prune

Search working directory for foo()
git grep "foo()"

To view the merge conclicts

git add $conflicting_file
git rebase --continue

PUBLISHCOMMIT

commit
REVERT BRANCHBROWSE UPDATECREATE

status
log

show
diff

branch

reset
checkout

revert
pull

fetch
merge

am

pushinit
clone

checkout

Commands Sequence

CHANGE

the curves indicate that the command on the right is usually
executed after the command on the left. This gives an idea of
the flow of commands someone usually does with Git.

format-patchbranch

Cheat Sheet Notation

U
se

fu
l C

om
m

an
ds

 http://git.or.cz/

Zack Rusin
Based on the work of:
Sébastien Pierre
Xprima Corp.

Concepts
Git Basics

git reset --hard
git rebase --skip

git diff
git diff --base $file
git diff --ours $file
git diff --theirs $file

After resolving conflicts, merge with

To discard conflicting patch

R
es

ol
ve

 M
er

ge
 C

on
fli

ct
s

(against base file)
(against your changes)
(against other changes)

(do for all resolved files)

(to start)
($id is the last working version)
($id is a broken version)

(to mark it as bad or good)

(once you're done)
(to launch gitk and mark it)

$id : notation used in this sheet to represent either a
commit id, branch or a tag name
$file : arbitrary file name
$branch : arbitrary branch name

master : default development branch
origin : default upstream repository
HEAD : current branch
HEAD^ : parent of HEAD
HEAD~4 : the great-great grandparent of HEAD

